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The cyclic saturation dislocation patterns within grains and in the vicinity of low-angle grain
boundaries in fatigued copper crystal were successfully observed by electron channeling contrast
technique in SEM. The results show that the dislocation patterns within grains consisted of typical
two-phase structure, i.e. persistent slip bands (PSB) and veins. With increasing plastic strain
amplitude (v, > 1.7 x 107?), large amount of PSBs and regular dislocation walls were observed.
The dislocation walls and PSBs could cross through the low-angle grain boundaries continuously
except that the dislocation-free zone (DFZs) appeared at some local regions. Combining with
the cyclic stress-strain response and dislocation patterns, the effect of low-angle grain boundaries
on cyclic deformation behavior was discussed.

1. Introduction

In recent decades, cyclic deformation behaviors of
copper monocrystal and polycrystal have been inves-
tigated extensively('~6l. At present, there still ex-
ist controversial results about the plateau of cyclic
stress-strain (CSS) curve in copper polycrystall®~®,
Therefore, it is very necessary to study the effect of
grain boundaries (including low-angle and large-angle
grain boundaries) on cyclic deformation. Recently,
Hu and his colleagues!”®! found that the CSS curves
of some copper bicrystals also exhibit plateau regions
at some plastic strain range and the saturation re-
solved shear stresses are somewhat higher than those
of single crystals due to the effect of large-angle grain
boundaries. However, up to now, the cyclic deforma-
tion behavior of the crystal containing low-angle grain
boundaries has not been studied yet. In addition,
the electron channeling contrast (ECC) technique in
scanning electron microscope (SEM) has been suc-
cessfully applied to observe the dislocation patterns
of deformed metals®~'!. As compared to the TEM
technique, the SEM-ECC technique has many attrac-
tive features, especially, it can obtain the information
of dislocation arrangement over a large area and at
some special sites, e.g. in the vicinity of grain bound-
ary, crack or deformation band. In this paper, we
will carry out cyclic deformation on the copper crys-
tal containing some low-angle grain boundaries basi-
cally parallel to the stress axis. By ECC-technique,
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the dislocation patterns in the vicinity of low-angle
grain boundaries and within grains can be observed.
Combining with the cyclic stress- strain response and
dislocation patterns, the effect of low-angle grain
boundaries on the dislocation patterns and cyclic
stress-strain response can be revealed.

2. Experimental

In the present study, the copper crystal with some
low-angle grain boundaries was grown from OHFC
copper of 99.999% purity by Bridgman method in a
horizontal furnace. Four fatigue specimens (T1-T4)
with some low-angle grain boundaries basically par-
allel to the stress axis were spark-machined from the
as-grown crystal, and their total length and gauge size
were 70 mm and 16x6 x 6 mm3 respectively. By the
Laue back reflection technique, the orientation of the
specimen was determined as [3 7 11], and the mis-
orientation between adjacent grains was in the range
of about 5°. Push-puil faiigue tests were performed
on a Schenck servo-hydraulic testing machine under
constant plastic strain control at room temperature
in air. A triangle wave with the frequency range of
0.05~0.3 Hz was used. Cyclic tension, compression
loads and hysteresis loops were recorded. The cycli-
cally saturated specimens were polished mechanically
and electrochemically to observe the dislocation pat-
terns within grains and in the vicinity of low-angle
grain boundaries by SEM-ECC technique. The oper-
ation conditions are listed in Table 1.
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Table 1 Operation conditions of dislocation pattern observation by SEM-ECC technique

3. Results and Discussion

Acceleration voltage working distance probe brightness contrast scanning rate
20 kV 15~22 mm 2~5nA  80~98%  30~33% TV/2K -
Table 2 Deformation parameters of the cop- § 50
per crystal containing low-angle B
. . N
grain boundaries (]
£ 40 ‘ A
TT T2 T3 T4 5 o )a —
et/(1075)Y 030 080 1.60 226 %’, 30r @=¢='~—°‘3/
/(10732 0.63 1.67 3.34 4.68 )
3) K d>a 20F o preseni res.ulls
Cas/MPa 62.1 625 63.0 627 3 & (135)/(135) bicrystal
4) : ¢ ® (235)/(235) bierystal
tas/MPa 29.8 30.0 302 301 13 1ol © (135)/(235) bicrystal
1) ep1: axial plastic strain amplitude; kS
2) yp1: resolved shear strain amplitude; B 0 X .
3) 0as: axial saturation stress; § 01 1 10
4) tas: saturation resolved shear stress. Plastic resolved shear strain(10)
Fig.1 Cyclic stress-strain curves of the copper
bicrystals® and the present crystal containing

3.1 Cyclic stress-strain response

The results show that all the four copper crystal
specimens exhibit initial cyclic hardening and satu-
ration behavior. The cyclic saturation resolved shear
stress amplitude reaches a value of about 30 MPa (see
Table 2) which is similar to that of the single-slip-
oriented copper monocrystalll:2l. There also exists a
plateau region in CSS curve at the plastic resolved
shear strain range from 0.63x1072 to 4.68x1073,
as shown in Fig.l. Thus, it is indicated that the
low-angle grain boundaries basically parallel to the
stress axis show little effect on cyclic deformation.
The result is somewhat similar to that in co-axial
[135]//[135] copper bicrystall”). However, as reported
in [135]//[235] and [235]//[235] copper bicrystals!8,
their cyclic saturation stresses were higher than those
of single crystals due to the effect of large-angle grain
boundary.

3.2 Surface dislocation pattern observation by SEM-

ECC technique

Cyclic saturation dislocation patterns in the sur-
face of specimen became visible at a magnification
of about 2000. At low strain amplitude (v, =
0.63 x 1073), the saturation dislocation patterns con-
sisted of typical two-phase structure ie. persistent
slip bands (PSBs) and veins, as indicated in Fig.2(a).
With increasing plastic resolved shear strain ampli-
tude (y,1 > 1.67 x 1072), the volume fraction of
PSBs increased and regular dislocation wall struc-
tures with the width of 1.5~1.7 um can be observed
throughout the whole specimen [see Fig.2(b) and (c)],
which is consistent with the observation in copper
monocrystall?.

Moreover, the cyclic saturation dislocation pat-
terns in the vicinity of low-angle grain boundaries
were observed. It was found that most of disloca-

some low-angle grain boundaries

tion walls and PSBs can transfer through the low-
angle grain boundaries continuously, as shown in
Fig.3(a)~(c). The result indicates that the stress and
strain are compatible in the vicinity of the low-angle
grain boundaries. Besides, dislocation-free zones
(DFZs) were found beside low-angle grain boundary
only at some local regions [see Fig.3(d)]. The width of
the dislocation-free zone is about 1~2 pym. In fatigued
copper polycrystals, the dislocation-free zone (DFZ)
was first reported by Winter et al.lt?l. It was found
that high-angle grain boundaries were frequently asso-
ciated with the zones of about 1~2.1 ym wide. They
suggest that the most likely function of DFZs is to
assist in the accommodation of incompatible strain
in the adjacent grain during cyclic deformation. Re-
cently, Luoh et al.l'3! found that the formation of
DTF'Zs beside large-angle grain boundary in fatigued
copper polycrystals is a very common phenomenon,
however, the formation of a DFZ beside a twin bound-
ary is very difficult!*¥), In the present study, the DFZ
as long as about 100 pm was observed along the low-
angle grain boundaries only at some local regions.

It is generally recognized that cyclic saturation re-
solved shear stress ¢,5 of copper monocrystal is almost
independent of plastic strain at some plastic strain
range (7,1 = 6.0 x 107° ~ 7.5 x 107?%) and represents
the stress required for the deformation in the PSBsl!l.
In polycrystals, grain boundaries are often considered
as an important factor to strengthen metallic ma-
terials and the stress-strain incompatibility at grain
boundaries has been discussed extensively!*®. Thus,
the low-angle grain boundaries might become an ad-
ditional obstacle to the persistent slip bands (PSBs).
However, in the present result, the low-angle grain
boundaries seem to have little effect on the cyclic
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Fig.2 Cyclic saturation dislocation patterns within grains observed by SEM-ECC technique (a) persistent
slip band and vein structures at low strain amplitude, (b) amounts of persistent slip bands and
dislocation walls, (¢) regular dislocation walls at high strain amplitude

Fig.3 Cyclic saturation dislocation patterns in the vicinity of low-angle grain boundary observed by
SEM-ECC technique (a) continuous dislocation walls structures, (b) continuous dislocation walls
structures, (c) continuous persistent slip bands, (d) dislocation-free zone at some local regions

deformation in the copper crystal. Because the cyclic ~ some local regions. In fact, the volume of the DFZ be-
saturation resolved shear stress does not go beyond  side the low-angle grain boundaries is very little. The
27~-30 MPa, and the cyclic saturation dislocation pat- next reason is that the cyclic saturation dislocation
terns almost continuously cross through the low-angle  patterns within grains also agree to the observation in
grain boundaries except that the DFZ was found at  copper monocrystal. That is to say, the resistance of
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these low-angle grain boundaries on PSBs may be neg-
ligible. It is reasonable to conclude that the stress and
strain are nearly compatible at low-angle grain bound-
aries and no obvious strengthening effect exists on the
copper crystal under cyclic loading. Similarly, for the
copper bicrystals!”8!| the plateau saturation resolved
shear stress is somewhat higher than that of single
crystals, which should be associated with the effect of
large-angle grain boundaries. Essentially, the cyclic
stress-strain curves (CSSCs) of polycrystals are asso-
ciated with the effect of grain boundaries on PEBs.
The cyclic saturation stress of polycrystals increases
with increasing plastic strain amplitude, which indi-
cates that the grain boundary strengthening plays an
important role. From the results of the present copper
crystal and the copper bicrystals™®l it is suggested
that there will still exist a plateau region in their CSS
curves of the copper bicrystals and the crystal with
low-angle grain boundaries basically parallel to the
stress axis despite the different degree effect of the
two kinds of grain boundaries.

4. Conclusions

(1) Copper crystal containing low-angle grain
boundaries shows a cyclic saturation resolved shear
stress of about 30 MPa at the plastic resolved shear
strain range from 0.63x1073 to 4.68x1073.

(2) The electron channeling contrast (ECC) tech-
nique has been successfully applied to observe the
cyclic saturation dislocation patterns within grains
and in the vicinity of low-angle grain boundaries of
the copper crystal. By comparing the cyclic stress-
strain response and dislocation patterns, it can be
concluded that the strengthening effect of low-angle

grain boundaries on the copper crystal under cyclic
deformation is very limited.
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