新闻动态
综合新闻
科研动态
学术活动
媒体聚焦
通知公告
您现在的位置:首页 > 新闻动态 > 学术活动
5.20】蒋鸿、潘清江 教授
题目1:First-principles approaches to electronic band structure of materials
题目2:氮供体大环锕系配合物的理论探索
 
2019-05-13 | 文章来源:联合研究部        【 】【打印】【关闭

题目1:First-principles approaches to electronic band structure of materials

报告人:蒋鸿 教授(北京大学)

时间:2019年5月20日(周一),上午9:30-10:40

地点:李薰楼468室

报告摘要:

  Electronic band structure is one of key material properties that has attracted ever-increasing interest in recent years thanks to tremendous efforts in solar-energy oriented photovoltaic and photocatalytic research. From the theoretical perspective, density functional theory in local density approximation (LDA) or various generalized gradient approximations (GGA) suffers from the well-known band gap problem[1]. Accurate theoretical prediction of electronic band structure of materials is therefore of great importance in both fundamental and applied research. Nowadays, the electronic band structure of the systems with weak electron correlations and relatively simple structures can be accurately described by Green’s function based many-body perturbation theory in the GW approach [2] and density functional theory in various hybrid functional approaches. On the other hand, there are still severe challenges for accurate theoretical prediction of electronic band structure of complex materials with complicated structure and/or compositions, and strongly correlated d/f-electron systems. In this work I will present our recent efforts to developing numerically accurate and efficient first-principles based theoretical approaches to electronic band structure of materials including numerically accurate GW approach in the linearized augmented planewaves (LAPW) framework [2-4], the perturbative modified Becke-Johnson potential method [5] as a quick and pragmatic approach to electronic band structure of complex materials, and a non-empirical doubly screened hybrid functional approach that can treat both narrow-gap and wide-gap insulating systems accurately [6].

[1] H. Jiang, Progress in Chemistry(《化学进展》), 24, 910 (2012).

[2] H. Jiang, R. I. Gomez-Abal, X. Li, C. Meisenbichler, C. Ambrosch-Draxl, and M. Scheffler, Computer Phys. Commun.,184, 348(2013).

[3] H. Jiang, and P. Blaha, Phys. Rev. B, 93, 115203 (2016).

[4] H. Jiang, Phys. Rev. B, 97, 245132 (2018).

[5] H. Jiang, J. Chem. Phys. 138, 134115 (2013).

[6] Z.-H. Cui, Y.-C. Wang, M.-Y. Zhang, X. Xu, Hong Jiang, J. Phys. Chem. Lett. 9, 2338-2345(2018).

报告人简历:

  蒋鸿,分别于1998年和2003年获得北京大学化学理学学士和博士学位。2001年2月至2004年8月,美国杜克大学访问学生/博士后;2004年10月至2006年9月,德国法兰克福大学博士后;2006年10月至2008年11月,德国柏林Fritz-Haber Institute博士后。2008年12月入职北京大学化学学院,任预聘制“北大百人”特聘研究员;2014年11月至今任长聘副教授、研究员。主要研究兴趣包括:基于格林函数的第一性原理多体理论方法发展;基于密度泛函理论框架的强关联体系第一性原理方法;光电能量转化材料、分子磁性、过渡金属及其氧化物表面和多相催化的理论研究。

 

题目2:氮供体大环锕系配合物的理论探索

报告人:潘清江 教授(黑龙江大学)

时间:2019年5月20日(周一),上午10:40-11:50

地点:李薰楼468室

报告摘要:

  锕系分子配合物性质的理论研究涉及计算方法的发展、锕系元素相对论量子化学、溶剂化效应模型化学和锕酰基配合物合成等重要研究领域。我们课题组采用改进的全电子密度泛函理论、考虑环境效应影响、根据不同性质计算引入不同层次的重金属相对论校正,系统探索了氮供体大环锕系配合物。研究包括高价(VI和V)、低价(I~IV)及混价金属配合物,对几何结构、电子性质、热力学反应能和氧化还原性质进行系统计算,同时对低价铀配合物的金属多重键进行解析。由于锕系化学对发展能源科学和环境科学均具有重要意义,我们的理论研究不仅为实验科学提供理论依据,而且对锕系理论化学的发展有重要推进作用。

报告人简历:

  潘清江,1976年生,教授、博士生导师,博士(后),教育部新世纪优秀人才,黑龙江省青年科技奖获得者,黑龙江省省级领军人才梯队带头人。2005年7月毕业于吉林大学,获博士学位。2010年破格晋升为教授。2011年被聘为博士生导师。2008至2010年在加拿大曼尼托巴大学完成博士后研究工作;2014至2015年在美国普林斯顿大学做访问教授。主要从事锕系分子科学和光电功能材料设计等方面的研究工作,在Chem. Commun.、Chem. Eur. J.、Inorg. Chem.、Organometallics等期刊上发表SCI收录论文近90余篇(署名第一作者和通讯作者)。作为负责人完成和在研国家自然科学基金2项、教育部基金3项、黑龙江省自然科学基金2项、省教育厅和人社厅项目4项;作为骨干成员参与教育部创新团队发展计划、国家“十一五”科技支撑计划重点项目等5项国家级基金。作为第一获奖人,获黑龙江省科学技术奖(自然类)二等奖、黑龙江省青年科技奖获、黑龙江省高校科学技术奖一等奖各1次;参与《结构化学》黑龙江省精品课程建设(第3位)。

文档附件

相关信息
联系我们 | 所长信箱 | 网站地图 | 友情链接
地址: 沈阳市沈河区文化路72号 邮编: 110016
管理员邮箱: office@imr.ac.cn
中国科学院金属研究所 版权所有 辽ICP备05005387号

官方微博

官方微信